Estimating tail probabilities of heavy tailed distributions with asymptotically zero relative error
نویسنده
چکیده
Efficient estimation of tail probabilities involving heavy tailed random variables is amongst the most challenging problems in Monte-Carlo simulation. In the last few years, applied probabilists have achieved considerable success in developing efficient algorithms for some such simple but fundamental tail probabilities. Usually, unbiased importance sampling estimators of such tail probabilities are developed and it is proved that these estimators are asymptotically efficient or even possess the desirable bounded relative error property. In this paper, as an illustration, we consider a simple tail probability involving geometric sums of heavy tailed random variables. This is useful in estimating probability of large delays in M/G/1 queues. In this setting we develop an unbiased estimator whose relative error decreases to zero asymptotically. The key idea is to decompose the probability of interest into a known dominant component and an unknown small component. Simulation then focuses on estimating the latter ‘residual’ probability. Here we show that the existing conditioning methods or importance sampling methods are not effective in estimating the residual probability while an appropriate combination of the two estimates it with bounded relative error. As a further illustration of the proposed ideas, we apply them to develop an estimator for large delays in stochastic activity networks that has an asymptotically zero relative error.
منابع مشابه
Simulating Tail Probabilities in GI/GI.1 Queues and Insurance Risk Processes with Sub Exponential Distributions
This paper deals with estimating small tail probabilities of the steady-state waiting time in a GI/GI/1 queue with heavy-tailed (subexponential) service times. The interarrival times can have any distribution with a nite mean. The problem of estimating in nite horizon ruin probabilities in insurance risk processes with heavy-tailed claims can be transformed into the same framework. It is well-k...
متن کاملOn the Efficiency Loss of State-independent Importance Sampling in the Presence of Heavy Tails
We consider importance sampling simulation for estimating rare event probabilities in the presence of heavy-tailed distributions that have polynomial-like tails. In particular, we prove the following negative result: there does not exist an asymptotically optimal state-independent change-of-measure for estimating the probability that a random walk (respectively, queue length for a single server...
متن کاملMaxima of Sums of Heavy-tailed Random Variables
In this paper, we investigate asymptotic properties of the tail probabilities of the maxima of partial sums of independent random variables. For some large classes of heavy-tailed distributions, we show that the tail probabilities of the maxima of the partial sums asymptotically equal to the sum of the tail probabilities of the individual random variables. Then we partially extend the result to...
متن کاملPitfalls in Using Weibull Tailed Distributions
By assuming that the underlying distribution belongs to the domain of attraction of an extreme value distribution, one can extrapolate the data to a far tail region so that a rare event can be predicted. However, when the distribution is in the domain of attraction of a Gumbel distribution, the extrapolation is quite limited generally in comparison with a heavy tailed distribution. In view of t...
متن کاملEfficient Simulation for Large Deviation Probabilities of Heavy - Tailed Sums
Let (Xn : n ≥ 0) be a sequence of iid rv’s with mean zero and finite variance. We present an efficient statedependent importance sampling algorithm for estimating the tail of Sn = X1 + ...+Xn in a large deviations framework as n ↗ ∞. Our algorithm can be shown to be strongly efficient basically throughout the whole large deviations region as n ↗ ∞ (in particular, for probabilities of the form P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Queueing Syst.
دوره 57 شماره
صفحات -
تاریخ انتشار 2007